

Single Day Event

From Protocol to SDTM: Automating Trial Design with Large Language Models

Haris Khan Arpitha Hanumanthaiah PointCross Life Sciences

Date: [22-11-2025]

Presenter: Arpita Hanumanthaiah, Haris Khan Organization: PointCross Life sciences

Intellectual Property:

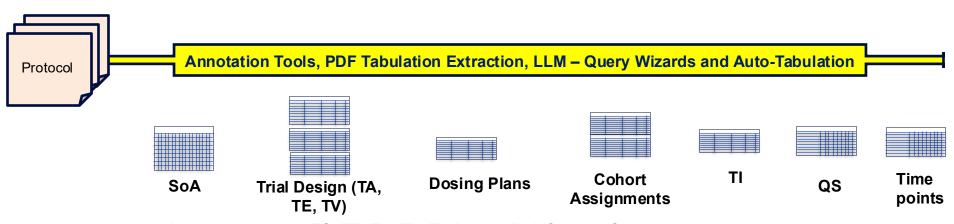
This presentation may include materials and information protected by copyright, trademarks, or other intellectual property rights belonging to PointCross Life Sciences. Use of such material is made under the fair use doctrine for educational, informational, and non-commercial purposes only. Any reproduction, redistribution, or use of the material beyond fair use may require the permission of the copyright holders.

Confidentiality Notice:

This presentation may contain confidential or proprietary information intended only for the use of the individuals or entities to whom it is addressed. If you are not the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this presentation is strictly prohibited.

Questions and Contact Information:

For questions or more information about this presentation, please contact [haris@pointcross.com & arpitha@pointcross.com].


- ✓ Protocol Digitization
- ✓ Why & How Large Language Models are used?
- ✓ Experience & Learnings
- ✓ Our Approaches & Methodologies
- ✓ Few Examples of Targeted Prompt Execution
- ✓ Human in Loop for Review & Approvals
- ✓ Automatic generation of SDTM Trial Design Domains
- ✓ Conclusion

Protocol Digitization

The protocol is the central source of study truth, guiding data collection and analysis. Manual extraction into systems is slow and error-prone, and frequent amendments often lead to inconsistencies across platforms.

Digitization converts the protocol from a narrative document into a structured, machine-readable model. This allows automated configuration of downstream systems (e.g., EDC, CDISC outputs), improving both accuracy and consistency.

Key study elements (TS, TE, TA, TV, TI, Dosing, DM, Cohorts, SoA) become machine-readable objects.

Why & How Large Language Models are Used?

Understanding Domain-Specific Language

Interprets clinical terminology and varied protocol phrasing to consistently extract accurate study concepts.

Handling Variability

Clinical documents vary vastly in styles and LLMs adapt to these variations.

Few-shot Learning

LLMs can be guided with just a few examples to extract specific information, making them much faster to deploy.

Chunking & Context Management

Breaks long protocols into logical sections while preserving relationships across design, visits, and endpoints.

Extracting Unstructured/Tabular Data

Converts narrative text and complex tables into clean, structured data formats like JSON or CSV.

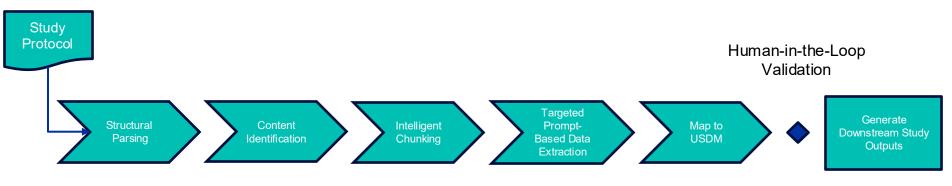
Summarizing Complex Study Design Logic

Simplifies dose escalation, randomization, and visit rules into clear summaries or rule-based representations.

Building Traceability

Links extracted data back to exact protocol locations for transparency, validation, and audit readiness.

Experience & Learnings

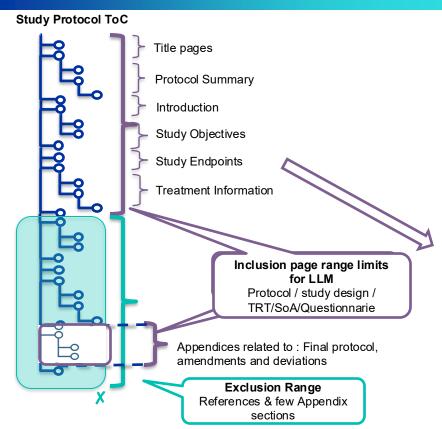

Using public or proprietary AI LLM providers with clinical study information raises significant regulatory risks. Concerns center on PHI/PII security, Intellectual Property exposure, and the inherent lack of GxP/regulatory compliance within these AI models.

To address this, we shifted to experimenting with secure private models:

- Nov 2024: Initial LLaMA training on study protocols produced unreliable, hallucinated outputs, not viable for production.
- Jan 2025: Switched to DeepSeek inference, resulting in a major improvement in quality and reliability.
- Mar 2025: Transitioned to Gemma, achieving stable, accurate, and consistently better performance.
- Expanded to fully private deployments on AWS SageMaker and Bedrock using large models like Anthropic Sonnet to ensure compliance, scalability, and secure enterprise-grade AI operations.

Our Approach

Extract Table of Contents


Categorize sections/sub-sections

Identify sections containing key study elements (Study Design, Endpoints, Schedule of Activities, assessments, dosing rules)

Break relevant sections into meaningful segments to support precise prompt execution Execute tailored extraction prompts to each chunk to generate structured study data components Align extracted elements to standardized USDM classes & fields and controlled terminologies Auto-create SDTM Trial Design domains

Intelligent Parsing of Table of Contents

Matrix of **Parameters vs Curated section** names where parameter information likely to be found

Param	Title Pages	Protocol Summary	Introduction	Objectives and Endpoints	Study Design	Study Intervention
DOSE		✓	4		✓	✓
DOSFRQ	✓		✓		✓	✓
OBJPRIM			1	1		
OBJSEC			√	1		
ROUTE	✓		4		4	✓
TRT	1		1		1	

ToC extracted page ranges

		Start	End
1	Title Pages	1	3
2	Protocol Summary	6	8
3	Introduction	16	20
4	Study Objectives	22	22
5	Study Endpoints	23	24
6	Study Design	25	26
7			

Trial Summary Prompts Execution

Title Pages

Protocol Summary

Introduction

Objectives and Endpoints

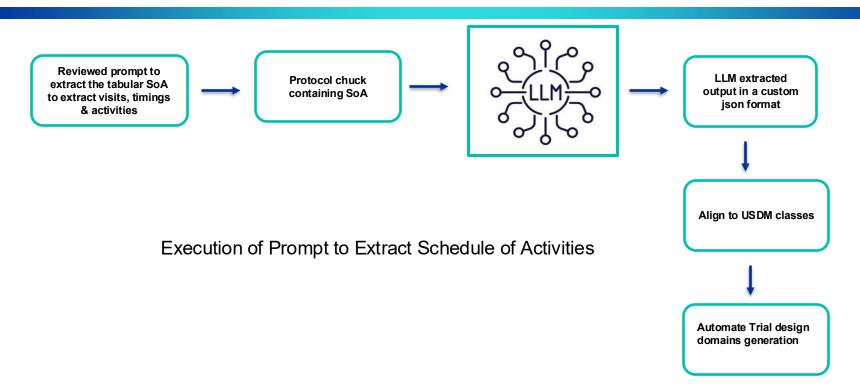
Study Design

Study Visit

SoA

Steps to execute the prompts:

- Collect the parameters likely to found in a section (as per the predefined matrix)
- Consolidate all the prompts of the selected parameters into one prompt
- Loop through all the chunks belongs to that section and execute the consolidated prompt


Param	Title Pages	Protocol Summary	Introduction	Objectives and Endpoints	Study Design	Study Intervention
DOSE		✓	✓		✓	✓
DOSFRQ	✓		✓		✓	1
OBJPRIM			✓	1		
OBJSEC			✓	1		
ROUTE	✓		✓		✓	✓
TRT	✓		✓		1	

```
Extract the following from the provided document and give response in json format:

{
    "DOSFRQ": {
        "Description": "Extract the dosing frequency of the study drug from dosing instructions or treatment plan. Do not extract or interpret dose cycle information or route of administration as dosing frequency. If the dosing frequency is not mentioned, return 'NA'.",
        "Value": "",
        "Sentences: "Return the complete sentence(s) from the text that directly support the inferred value. If the value is blank or no relevant supporting information is found, return 'N/A'"
    },
        "OBJPRIM": {
        "Description": "Extract only the primary objective of the clinical study from the provided text. Return only the objective explicitly designated as primary or described as the main purpose of the study. Exclude any secondary, exploratory, pharmacokinetic, safety, or procedural objectives. If no primary objective is clearly stated, return 'NA'.",
        "Value": "",
        "Sentences": "Return the complete sentence(s) from the text that directly support the inferred value. If the value is blank or no relevant supporting information is found, return 'N/A'"
    }
```


Chuse Schedule of Activities Prompt Execution

Schedule of Activities Prompt Execution

Precise prompt to extract the tabular SoA to extract visits, timings & activities

SoA

Extract the Schedule of Activities data from on image and return it in tabulated format. Capture all relevant information from tables, footnotes, and inline citations—even if multiple tabus. different treatment arms, dose escalation phases, or varied schedules. Ensure all activity—one pairs are extracted accurately and completely. The capture of the following mumps, based on the waylability.

Table - The title of the table.

Activity - This refers to the specific tasks, assessments, or procedures that are community during a study visit.

Cycle - A repeating period of treatment and evaluation in a clinical trial.

Cycle Window - The total length of a single treatment cycle. It defines the start and end days for that specific block of the study. Visit - The specific label assigned to each clinical trial visit.

visit - The specific label assigned to each clinical trial visit.
Visit Day - This specifies the exact day or range of days when a visit is scheduled to happen, relative to the start of the study treatment. This provides clarity on how long after enrollment a specific visit is planned.

Visit Rindow - This column defines the permissible timeframe around a target visit day, allowing for some flexibility in scheduling. If not explicitly provided, skip this field.

Export - A period of time that serves a purpose in the trial as a whole. This refers to a named study segment that reflects a distinct period in the study

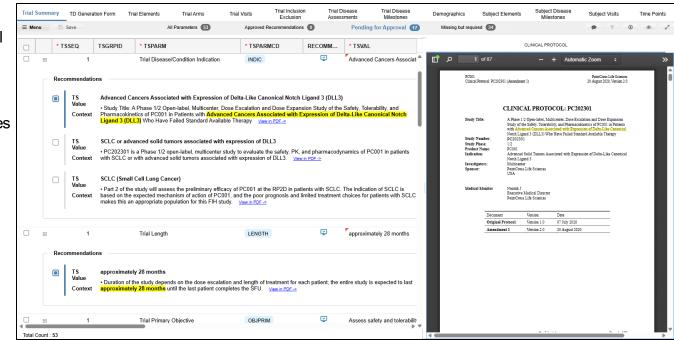
Epoch - A period of time that serves a purpose in the trial as a whole. This refers to a named study segment that reflects a distinct period in the study timeline. E.g., Screening, Baseline, etc.
Notes - Extract all footnotes linked to the Schedule of Activities table in the clinical protocol by identifying superscript/subscript markers (e.g., ', '

Notes - Extract all footnotes linked to the Schedule of Activities table in the clinical protocol by identifying superscript/subscript markers (e.g., *, *, *, *, tect) that are directly taged to the activity names, visit timepoints (column baseds), or specific cell values. For each activity that as superscript/subscript, consolidate all related footnotes—including inline notes, coll—level citations, column—level notes, and table—level footnotes—including inline notes, coll—level citations, column—level notes, and table—level footnotes—including inline notes, coll—level citations, column—level notes, and table—level footnotes—including inline notes, coll—level citations, column—level notes, and table—level footnotes—including inline notes, coll—level citations, column—level notes, and table—level footnotes—including inline notes. Notes in the column level of the column level footnotes—including inline notes in the column level footnotes—including inline notes in the column level footnotes—including inline notes, column level footnotes—including inline notes, column—level notes includes activity to superscript/subscript is accurately mapped to its corresponding footnote, and avoid duplicating identical notes accordance to superscript/subscript is accurately mapped to its corresponding footnote, and avoid duplicating identical notes accordance accurately mapped to its corresponding footnote, and avoid duplicating identification in the corresponding footnotes.

Do not miss any notes attached as they are critical information to understand the activities specifically performed during the visits. Do not infer missing values, only return explicitly stated values. Ensure accurate mapping of each extracted value to the appropriate column and maintain consistent formatting across all fleids. Follow the instructions provided above strictly and return only the tabulated response.

Align to USDM classes to automate Trial design domains generation LLM extracted output to flat structure

C Refresh	+ Add Delete Save - (-) A	Approve Gont View									Υ	
Name	Description	Label	From	Type	То	ToFrom	Value	Value Label	Window Label	Window Lower	Window Upper	
TIM1	Screening period – informed consent a	Screening	SCREEN	BEFORE	C1D1	S2S	P28D	Day -28 to -1	D -28 to -1	POD	P270	1
TIM2	Cycle 1 Day 1 - First fixed dose admin	C1D1 - First Dose	C1D1	FIXED	C1D1	S2S	P1D	Day 0				
TIM3	Cycle 1 Day 2 - Early post-dose	C1D2	C1D1	AFTER	C1D2	S2S	P1D	Day 2				
TIM4	Cycle 1 Day 3 - Continued safety and	C1D3	C1D2	AFTER	C1D3	S2S	P1D	Day 3				
TIM5	Cycle 1 Day 5 - Safety and lab evaluat	C1D5	C1D3	AFTER	C1D5	S2S	P2D	Day 5	1 day after planned visit	P1D	P1D	
TIM6	Cycle 1 Day 8 - Second weekly fixed d	C1D8	C1D5	AFTER	C1D8	S2S	P3D	Day 8	1 day before to 1 day after pla	P1D	P1D	
TIM7	Cycle 1 Day 15 - End-of-cycle fixed do	C1D15	C1D8	AFTER	C1D15	S2S	P7D	Day 15	1 day before to 1 day after pla	P1D	P1D	
TIM8	Cycle 2 Day 1 - Start of next cycle dos	C2D1	C1D15	AFTER	C2D1	S2S	P7D	Day 22				
TIM9	Cycle 2 Day 8 - Mid-cycle fixed dose	C2D8	C2D1	AFTER	C2D8	S2S	P7D	Day 29	1 day before to 1 day after pla	P1D	P1D	
TIM10	Cycle 2 Day 15 - End-of-cycle dose	C2D15	C2D8	AFTER	C2D15	S2S	P7D	Day 36	1 day before to 1 day after pla	P1D	P1D	
TIM11	Cycle 3+ Day 1 - Maintenance weekly	C3D1	C2D15	AFTER	C3D1	S2S	P7D	Day 43				
TIM12	Cycle 3 Day 2- Early post-dose	C3D2	C3D1	AFTER	C3D2	S2S	P7D	Day 49				
TIM13	Cycle 3 Day 3- Continued safety and P.	C3D3	C3D2	AFTER	C3D3	S2S	P7D	Day 55				
TIM14	Cycle 3 Day 5- Safety and lab evaluation	C3D5	C3D3	AFTER	C3D5	S2S	P7D	Day 61				
TIM15	Cycle 3 Day 8- Third weekly fixed dose	C3D8	C3D5	AFTER	C3D8	S2S	P7D	Day 67	1 day before to 1 day after pla	P1D	P1D	
												, '


	Study Period	Screen	$\overline{}$						Tre	Treatment Period								Post-treatment		
				Cycle 1						Cycle 2				C3+					SFU	
	Study Day	-28 to -1	1 ^b	2	3	5	8	15	1	8	15	1	2	3	5	8	15	≤7d post last dose	>28d post last dose	LTFU*
	Window					+ld	±ld	±ld	n/a	±ld	±ld	n/a				±ld	±ld	+7d	+7d	
	Informed Consent ^c	X																		
	Inclusion/Exclusion	Х																		
	Enrollment /Dose Assignment	X																		
	Demography/Medical History	X																		
	ECOG	X							X			X						X		
.	Weight, Height ^d	X							X			X						X		
	Physical Examination ^e	X	X				X	X	X	X	X	X				Xe	Xe	X		
	Vital Signs ^c	X	X	X	X		X	X	X	X	X	X				X	X	X		
	Pulse Oximetry ^x	X	X				X	X	X	X	X	X				X	X	X		
	12-Lead ECGs		X						X			X						X		
	Hematology ^h	X	X	X	X		X	X	X			X						X		
	Chemistry	X	X	X	X		X	X	X			X						X		
	Coagulation ^j	X	X						X			X						X		
	Urinalysis ^k		X						X			X						X		
	Pregnancy Test ^v	X	X						X			X						X		
	Serum Cytokines ¹		X	X	X		X	X	X			C3, C61								
	Immunophenotyping (blood) ^m		X	X	X		X	X				C3, C6 m	C6	C6						
	Serum BCMA ⁿ		X					X	X		X	X ⁿ						X		
	PK Samples ^o		X	X	X	X	X	X	X	X	X	X ^o	C6	C6	C6			X		
	Anti-Drug Antibodies ^p		X					X	X		X	Χp						X		
	Bone Marrow Biomarkers ^q		X									C3, C6+4						X		
	Disease Assessment	X	X					X			X						X	Xw		
	Hospital Admissions		X																	

- [Table	Activity	Cycle	Cycle Wi	Visit	Visit Day	Visit Win	Epoch	N es
	Schedule of Assessments – Study Visits: Single-F	Informed			Screen	-28 to -1		Screen	in a fined Consent - • [Superscript 1] Long-term follow-up telephone calls or visits to occur monthly (#7 days) for 6 months, the
	Schedule of Assessments - Study Visits: Single-F	Inclusion	-	-	Screen	-28 to -1		Screen	Inclusion/Exclusion = • [Superscript 2] Brackets designate visits/assessments that be completed within ±1d screening assessments
	Schedule of Assessments – Study Visits: Single-F	Enrollme		-	Screen	-28 to -1		Screen	Enrollment / Dose Assignment - None
4	Schedule of Assessments - Study Visits: Single-F	Demogra		-	Screen	-28 to -1		Screen	Demography/Medical History = None
	Schedule of Assessments – Study Visits: Single-F	ECOG			Screen	-28 to -1		Screen	ECOG = None
	Schedule of Assessments – Study Visits: Single-F	ECOG	Cycle 1	-	1	. 1		Treatmen	ECOG = None
	Schedule of Assessments – Study Visits: Single-F	ECOG	Cycle2+	-	1	1	n/a	Treatmen	ECOG = None
	Schedule of Assessments – Study Visits: Single-F	ECOG	-	-	EOT	≤7d post l	-	Post-treat	ECOG - None
	Schedule of Assessments – Study Visits: Single-F	Weight, H			Screen	-28 to -1		Screen	Weight, Height = • [Superscript 3] Height is measured at Screening only.
	Schedule of Assessments - Study Visits: Single-F	Weight, H	Cycle 1	-	1	1	-	Treatmen	Weight, Height * • [Superscript 3] Height is measured at Screening only.
	Schedule of Assessments – Study Visits: Single-F	Weight, H	Cycle2+		1	. 1	n/a	Treatmen	Weight, Height - • [Superscript 3] Height is measured at Screening only.
	Schedule of Assessments – Study Visits: Single-F	Weight, H		-	EOT	≤7d post l		Post-treat	Weight, Height = • [Superscript 3] Height is measured at Screening only.
	Schedule of Assessments – Study Visits: Single-F	Physical	-	-	Screen	-28 to -1		Screen	Physical Examination * • [Superscript 4, 5] Full physical examination & Screening: abbreviated physical exams at indicated vis
	Schedule of Assessments – Study Visits: Single-F	Physical	Cycle 1	-	1	. 1		Treatmen	Physical Examination * • [Superscript 4, 5] Full physical examination & Screening: abbreviated physical exams at indicated vis
	Schedule of Assessments – Study Visits: Single-F	Physical I	Cycle 1	-	8	8	±1d	Treatmen	Physical Examination = • [Superscript 4, 5] Full physical examination & Screening: abbreviated physical exams at indicated vis
	Schedule of Assessments – Study Visits: Single-F	Physical	Cycle 1	-	15	15	*1d	Treatmen	Physical Examination - • [Superscript 4, 5] Full physical examination & Screening: abbreviated physical exams at indicated vis
	Schedule of Assessments – Study Visits: Single-F	Physical	Cycle2+	-	1	. 1	n/a	Treatmen	Physical Examination = • [Superscript 4, 5] Full physical examination & Screening: abbreviated physical exams at indicated vis
	Schedule of Assessments – Study Visits: Single-F	Physical	C3+	-	5	5	*1d	Treatmen	Physical Examination * • [Superscript 4, 5] Full physical examination & Screening: abbreviated physical exams at indicated vis
	Schedule of Assessments – Study Visits: Single-F	Physical I	C3+		8	8	±1d	Treatmen	Physical Examination - • [Superscript 4, 5] Full physical examination & Screening: abbreviated physical exams at indicated vis
	Schedule of Assessments – Study Visits: Single-F	Physical I			EOT	≤7d post		Post-treat	Physical Examination * • [Superscript 4, 5] Full physical examination & Screening: abbreviated physical exams at indicated vis
	Schedule of Assessments – Study Visits: Single-F	Vital Sign		-	Screen	-28 to -1		Screen	Vital Signs * • [Superscript 6] Vital signs: blood pressure, heart rate, respiratory rate, and body temperature call or text as at dr
	Schedule of Assessments – Study Visits: Single-F	Vital Sign	Cycle 1		1	. 1		Treatmen	Vital Signs = • [Superscript 6] Vital signs: blood pressure, heart rate, respiratory rate, and body temperature call or text as at dr
4	Schedule of Assessments – Study Visits: Single-F	Vital Sign	Cycle 1	-	2	2	-	Treatmen	Vital Signs * • [Superscript 6] Vital signs: blood pressure, heart rate, respiratory rate, and body temperature call or text as at dr
	Schedule of Assessments – Study Visits: Single-F	Vital Sign	Cycle 1		3	3		Treatmen	Vital Signs - • [Superscript 6] Vital signs: blood pressure, heart rate, respiratory rate, and body temperature call or text as at dr
4	Schedule of Assessments – Study Visits: Single-F	Vital Sign	Cycle 1	-	8	8	±1d	Treatmen	Vital Signs = • [Superscript 6] Vital signs: blood pressure, heart rate, respiratory rate, and body temperature call or text as at dr
	Schedule of Assessments – Study Visits: Single-F	Vital Sign	Cycle 1		15	15	*1d	Treatmen	Vital Signs = • [Superscript 6] Vital signs: blood pressure, heart rate, respiratory rate, and body temperature call or text as at dr
	Schedule of Assessments - Study Visits: Single-F	Vital Sign	Cycle2+		1	1	n/a	Treatmen	Vital Signs * • [Superscript 6] Vital signs: blood pressure, heart rate, respiratory rate, and body temperature call or text as at dr

Human in Loop - Review & Approvals

- Compare LLM-extracted data side-by-side with source protocol text and line references
- Study team reviews and approves extracted elements before processing
- Approved data automatically supports SDTM Trial Design generation, and study build outputs

Targeted prompt-driven NLP and semantic modeling enable precise extraction of key study elements directly from the protocol.

Human-in-the-loop review safeguards scientific intent while reducing manual effort and interpretation variability.

This digital solution accelerates workflows, enhances data quality, and enables full automation via USDM structure for study build and SDTM trial design with full traceability.

Thank you

Xbiom makes data useful

The Global Healthcare Data Science Community

Contact Channels

UK +44 1843 609600

office@phuse.global phuse.global

Social Media

@phusetwitta /phusebook

/phusetube

/company/phuse

Questions and Contact Information:

For questions or more information about this presentation, please contact

[Haris Khan, haris@pointcross.com]

[Arpitha Hanumanthaiah, arpitha@pointcross.com]